Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
J Agric Food Chem ; 72(13): 7089-7099, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512774

RESUMEN

Breast cancer patients undergoing chemotherapy often experience muscle wasting and weakness, which impact their quality of life. A potential solution lies in customizing amino acid compositions based on exome-derived formulations (ExAAs). The study hypothesized that tailoring dietary amino acids using ExAAs could enhance muscle health. Theoretical amino acid requirements were calculated from the genome's exome region, and a breast cancer mouse model undergoing paclitaxel treatment was established. The mice were supplemented with a cancer-specific nutritional formula (QJS), and the effects of QJS and amino acid-adjusted QJS (adjQJS) were compared. Both formulations improved the nutritional status without compromising tumor growth. Notably, adjQJS significantly enhanced muscle strength compared to QJS (1.51 ± 0.25 vs. 1.30 ± 0.08 fold change, p < 0.05). Transcriptome analysis revealed alterations in complement and coagulation cascades, with an observed upregulation of C3 gene expression in adjQJS. Immune regulation also changed, showing a decrease in B cells and an increase in monocytes in skeletal muscle with adjQJS. Importantly, adjQJS resulted in a notable increase in Alistipes abundance compared to QJS (10.19 ± 0.04% vs. 5.03 ± 1.75%). This study highlights the potential of ExAAs as valuable guide for optimizing amino acid composition in diets for breast cancer patients undergoing chemotherapy.


Asunto(s)
Neoplasias de la Mama , Exoma , Humanos , Animales , Ratones , Femenino , Exoma/genética , Calidad de Vida , Aminoácidos/metabolismo , Dieta , Fuerza Muscular , Músculo Esquelético/metabolismo , Suplementos Dietéticos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
2.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441497

RESUMEN

The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.

3.
J Med Virol ; 96(3): e29487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482901

RESUMEN

Human norovirus (HuNoV) is the most predominant viral agents of acute gastroenteritis. Point-of-care testing (POCT) based on lateral flow immunochromatography (LIFC) has become an important tool for rapid diagnosis of HuNoVs. However, low sensitivity and lack of quantitation are the bottlenecks of traditional LIFC. Thus, we established a rapid and accurate technique that combined immunomagnetic enrichment (IM) with LFIC to identify GII HuNoVs in fecal specimens. Before preparing immunofluorescent nanomagnetic microspheres and achieving the effect of HuNoV enrichment in IM and fluorescent signal in LFIC, amino-functionalized magnetic beads (MBs) and carboxylated quantum dots (QDs) were coupled at a mass ratio of 4:10. Anti-HuNoV monoclonal antibody was then conjugated with QDs-MB. The limit of detection was 1.56 × 104 copies/mL, and the quantitative detection range was 1.56 × 104 copies/mL-1 × 106 copies/mL under optimal circumstances. The common HuNoV genotypes GII.2, GII.3, GII.4, and GII.17 can be detected, there was no cross-reaction with various enteric viruses, including rotavirus, astrovirus, enterovirus, and sapovirus. A comparison between IM-LFIC and RT-qPCR for the detection of 87 fecal specimens showed a high level of agreement (kappa = 0.799). This suggested that the method is rapid and sensitive, making it a promising option for point-of-care testing in the future.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Rotavirus , Sapovirus , Humanos , Norovirus/genética , Microesferas , Rotavirus/genética , Sapovirus/genética , Heces , Infecciones por Caliciviridae/diagnóstico
4.
Nutrients ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474727

RESUMEN

Hepatocellular carcinoma (HCC), being ranked as the top fifth most prevalent cancer globally, poses a significant health challenge, with a considerable mortality rate. Hepatitis B virus (HBV) infection stands as the primary factor contributing to HCC, presenting substantial challenges in its treatment. This study aimed to identify lactic acid bacteria (LAB) with anti-HBV properties and evaluate their impact on the intestinal flora in HBV-associated HCC. Initially, two LAB strains, Levilactobacillus brevis SR52-2 (L. brevis SR52-2) and LeviLactobacillus delbrueckii subsp. bulgaicus Q80 (L. delbrueckii Q80), exhibiting anti-HBV effects, were screened in vitro from a pool of 498 LAB strains through cell experiments, with extracellular expression levels of 0.58 ± 0.05 and 0.65 ± 0.03, respectively. These strains exhibited the capability of inhibiting the expression of HBeAg and HBsAg. Subsequent in vitro fermentation, conducted under simulated anaerobic conditions mimicking the colon environment, revealed a decrease in pH levels in both the health control (HC) and HCC groups influenced by LAB, with a more pronounced effect observed in the HC group. Additionally, the density of total short-chain fatty acids (SCFAs) significantly increased (p < 0.05) in the HCC group. Analysis of 16S rRNA highlighted differences in the gut microbiota (GM) community structure in cultures treated with L. brevis SR52-2 and L. delbrueckii Q80. Fecal microflora in normal samples exhibited greater diversity compared to HBV-HCC samples. The HCC group treated with LAB showed a significant increase in the abundance of the phyla Firmicutes, Bacteroidetes and Actinobacteria, while Proteobacteria significantly decreased compared to the untreated HCC group after 48 h. In conclusion, the findings indicate that LAB, specifically L. brevis SR52-2 and L. delbrueckii Q80, possessing antiviral properties, contribute to an improvement in gastrointestinal health.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Hepatitis B Crónica , Hepatitis B , Lactobacillales , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicaciones , Virus de la Hepatitis B/genética , ARN Ribosómico 16S , Anticuerpos
5.
Food Chem ; 446: 138805, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422639

RESUMEN

Non-specific binding in fluorescence resonance energy transfer (FRET) remains a challenge in foodborne pathogen detection, resulting in interference of high background signals. Herein, we innovatively reported a dual-mode FRET sensor based on a "noise purifier" for the ultrasensitive quantification of Escherichia coli O157:H7 in food. An efficient FRET system was constructed with polymyxin B-modified nitrogen-sulfur co-doped graphene quantum dots (N, S-GQDs@PMB) as donors and aptamer-modified yellow carbon dots (Y-CDs@Apt) as acceptors. Magnetic multi-walled carbon nanotubes (Fe@MWCNTs) were employed as a "noise purifier" to reduce the interference of the fluorescence background. Under the background purification mode, the sensitivity of the dual-mode signals of the FRET sensor has increased by an order of magnitude. Additionally, smartphone-assisted colorimetric analysis enabled point-of-care detection of E. coli O157:H7 in real samples. The developed sensing platform based on a "noise purifier" provides a promising method for ultrasensitive on-site testing of trace pathogenic bacteria in various foodstuffs.


Asunto(s)
Nanotubos de Carbono , Puntos Cuánticos , Fluorescencia , Teléfono Inteligente , Escherichia coli , Puntos Cuánticos/química , Pruebas en el Punto de Atención
6.
Int J Food Microbiol ; 413: 110603, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306773

RESUMEN

Human noroviruses (HuNoVs) are the most predominant viral agents of acute gastroenteritis. Vegetables are important vehicles of HuNoVs transmission. This study aimed to assess the HuNoVs prevalence in vegetables. We searched the Web of Science, Excerpta Medica Database, PubMed, and Cochrane databases until June 1, 2023. A total of 27 studies were included for the meta-analysis. Statistical analysis was conducted using Stata 14.0 software. This analysis showed that the pooled HuNoVs prevalence in vegetables was 7 % (95 % confidence interval (CI): 3-13) worldwide. The continent with largest number of studies was Europe, and the highest number of samples was lettuce. As revealed by the results of the subgroup meta-analysis, the prevalence of GI genogroup was the highest (3 %, 95 % CI: 1-7). A higher prevalence was seen in vegetables from farms (18 %, 95 % CI: 5-37), while only 4 % (95 % CI: 1-8) in retail. The HuNoVs prevalence of ready-to-eat vegetables and non-ready-to-eat vegetables was 2 % (95 % CI: 0-8) and 9 % (95 % CI: 3-16), respectively. The prevalence by quantitative real time RT-PCR was 8 % (95 % CI: 3-15) compared to 3 % (95 % CI: 0-13) by conventional RT-PCR. Furthermore, the HuNoVs prevalence in vegetables was 6 % (95 % CI: 1-14) in ISO pretreatment method and 8 % (95 % CI: 1-19) in non-ISO method, respectively. This study is helpful in comprehensively understanding the prevalence of HuNoVs contamination in vegetables worldwide.


Asunto(s)
Gastroenteritis , Norovirus , Humanos , Verduras , Norovirus/genética , Genotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Redox Biol ; 70: 103065, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340636

RESUMEN

Oxidative stress (OS) and disruption of proteostasis caused by aggregated proteins are the primary causes of cell death in various diseases. Selenopeptides have shown the potential to control OS and alleviate inflammatory damage, suggesting promising therapeutic applications. However, their potential function in inhibiting proteotoxicity is not yet fully understood. To address this gap in knowledge, this study aimed to investigate the effects and underlying mechanisms of the selenopeptide VPRKL(Se)M on amyloid ß protein (Aß) toxicity in transgenic Caenorhabditis elegans. The results revealed that supplementation with VPRKL(Se)M can alleviate Aß-induced toxic effects in the transgenic C. elegans model. Moreover, the addition of VPRKL(Se)M inhibited the Aß aggregates formation, reduced the reactive oxygen species (ROS) levels, and ameliorated the overall proteostasis. Importantly, we found that the inhibitory effects of VPRKL(Se)M on Aß toxicity and activation of the unfolded protein are dependent on skinhead-1 (SKN-1). These findings suggested that VPRKL(Se)M is a potential bioactive agent for modulating SKN-1, which subsequently improves proteostasis and reduces OS. Collectively, the findings from the current study suggests VPRKL(Se)M may play a critical role in preventing protein disorder and related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cordyceps , Animales , Caenorhabditis elegans/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cordyceps/metabolismo , Animales Modificados Genéticamente , Estrés Oxidativo
8.
Clin Interv Aging ; 19: 31-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204960

RESUMEN

Objective: The risk factors of postoperative pulmonary complications (PPCs) have been extensively investigated in non-cardiac surgery and non-elderly adult patients undergoing cardiac surgery. However, data on elderly patients after cardiopulmonary bypass (CPB) is limited. This study aimed to evaluate the risk factors and short-term outcomes for PPCs in elderly patients undergoing CPB procedures. Patients and Methods: Data from 660 patients who underwent CPB over a six-year period at a tertiary care hospital were collected. The primary outcome encompassed the incidence of PPCs, including re-intubation, postoperative mechanical ventilation exceeding 48 hours, pulmonary infection, pleural effusion requiring thoracic drainage, and acute respiratory distress syndrome. Missing data were managed using multiple imputation. Univariate analysis and the multiple logistic regression method were utilized to ascertain independent risk factors for PPCs. Results: Among the 660 patients, PPCs were observed in 375 individuals (56.82%). Multiple logistic regression identified serum albumin levels <40 g/L, type of surgery, CPB duration >150 minutes, blood transfusion, and intra-aortic balloon pump use before extubation as independent risk factors for PPCs. Patients experiencing PPCs had prolonged mechanical ventilation, extended hospitalization and ICU stays, elevated postoperative mortality, and higher tracheotomy rates compared to those without PPCs. Conclusion: Elderly patients following CPB displayed a substantially high incidence of PPCs, significantly impacting their prognosis. Additionally, this study identified five prominent risk factors associated with PPCs in this population. These findings enable clinicians to better recognize patients who may benefit from perioperative prevention strategies based on these risk factors.


Asunto(s)
Extubación Traqueal , Puente Cardiopulmonar , Anciano , Humanos , Persona de Mediana Edad , Puente Cardiopulmonar/efectos adversos , Drenaje , Hospitalización
9.
Appl Microbiol Biotechnol ; 108(1): 156, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244075

RESUMEN

Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Insuficiencia Cardíaca , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Diabetes Mellitus Tipo 2/terapia , Dieta
10.
J Neuroinflammation ; 21(1): 24, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233868

RESUMEN

BACKGROUND: Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS: We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS: We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS: Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Neuronas Receptoras Olfatorias , Humanos , Ratones , Animales , Virus de la Encefalitis Equina Venezolana/genética , Sistema Nervioso Central , Replicación Viral
11.
Int J Biol Sci ; 20(2): 664-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169590

RESUMEN

Myeloid derived suppressor cells (MDSCs) are known to accumulate in cancer patients and tumor-bearing mice, playing a significant role in promoting tumor growth. Depleting MDSCs has emerged as a potential therapeutic strategy for cancer. Here, we demonstrated that a fungal polysaccharide, extracted from Grifola frondosa, can effectively suppress breast tumorigenesis in mice by reducing the accumulation of MDSCs. Treatment with Grifola frondosa polysaccharide (GFI) leads to a substantial decrease in MDSCs in the blood and tumor tissue, and a potent inhibition of tumor growth. GFI treatment significantly reduces the number and proportion of MDSCs in the spleen, although this effect is not observed in the bone marrow. Further analysis reveals that GFI treatment primarily targets PMN-MDSCs, sparing M-MDSCs. Our research also highlights that GFI treatment has the dual effect of restoring and activating CD8+T cells, achieved through the downregulation of TIGIT expression and the upregulation of Granzyme B. Taken together, our findings suggest that GFI treatment effectively eliminates PMN-MDSCs in the spleen, leading to a reduction in MDSC numbers in circulation and tumor tissues, ultimately enhancing the antitumor immune response of CD8+T cells and inhibiting tumor growth. This study introduces a promising therapeutic agent for breast cancer.


Asunto(s)
Neoplasias de la Mama , Grifola , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Femenino , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/metabolismo , Polisacáridos/farmacología
12.
Int J Surg ; 110(1): 219-228, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37738004

RESUMEN

BACKGROUND: Identifying the risk factors associated with perioperative mortality is crucial, particularly in older patients. Predicting 6-month mortality risk in older patients based on large datasets can assist patients and surgeons in perioperative clinical decision-making. This study aimed to develop a risk prediction model of mortality within 6 months after noncardiac surgery using the clinical data from 11 894 older patients in China. MATERIALS AND METHODS: A multicentre, retrospective cohort study was conducted in 20 tertiary hospitals. The authors retrospectively included 11 894 patients (aged ≥65 years) who underwent noncardiac surgery between April 2020 and April 2022. The least absolute shrinkage and selection operator model based on linear regression was used to analyse and select risk factors, and various machine learning methods were used to build predictive models of 6-month mortality. RESULTS: The authors predicted 12 preoperative risk factors associated with 6-month mortality in older patients after noncardiac surgery. Including laboratory-associated risk factors such as mononuclear cell ratio and total blood cholesterol level, etc. Also including medical history associated risk factors such as stroke, history of chronic diseases, etc. By using a random forest model, the authors constructed a predictive model with a satisfactory accuracy (area under the receiver operating characteristic curve=0.97). CONCLUSION: The authors identified 12 preoperative risk factors associated with 6-month mortality in noncardiac surgery older patients. These preoperative risk factors may provide evidence for a comprehensive preoperative anaesthesia assessment as well as necessary information for clinical decision-making by anaesthesiologists.


Asunto(s)
Accidente Cerebrovascular , Humanos , Anciano , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Toma de Decisiones Clínicas
13.
Free Radic Biol Med ; 212: 80-93, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38151212

RESUMEN

Remote Ischemic Preconditioning (RIPC) can reduce myocardial ischemia-reperfusion injury, but its mechanism is not clear. In order to explore the mechanism of RIPC in myocardial protection, we collected myocardial specimens during cardiac surgery in children with tetralogy of Fallot for sequencing. Our study found RIPC reduces the expression of the calcium channel subunit cacna2d3, thereby impacting the function of calcium channels. As a result, calcium overload during ischemia-reperfusion is reduced, and the activation of calpain 1 is inhibited. This ultimately leads to a decrease in calpain 1 cleavage of Bax, consequently inhibiting increased mitochondrial permeability-mediated apoptosis. Notably, in both murine and human models of myocardial ischemia-reperfusion injury, RIPC inhibiting the expression of the calcium channel subunit cacna2d3 and the activation of calpain 1, improving cardiac function and histological outcomes. Overall, our findings put forth a proposed mechanism that elucidates how RIPC reduces myocardial ischemia-reperfusion injury, ultimately providing a solid theoretical foundation for the widespread clinic application of RIPC.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Precondicionamiento Isquémico , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Niño , Humanos , Animales , Ratones , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Calpaína/genética , Calpaína/metabolismo , Apoptosis , Canales de Calcio , Daño por Reperfusión/patología
14.
Int J Food Microbiol ; 411: 110517, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38096676

RESUMEN

This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.


Asunto(s)
Bacillus cereus , Depsipéptidos , Animales , Bacillus cereus/genética , Eméticos/metabolismo , Lactosa/metabolismo , Leche/metabolismo , Depsipéptidos/farmacología
15.
Food Chem X ; 20: 101036, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38059176

RESUMEN

Microbes are critical for flavor formation in fermented foods; however, their mechanisms of action are not fully understood. The microbial composition of 51 dairy and 47 vegetable products was functionally annotated and the carbohydrate-active enzyme (CAZyme) profiles of Lactiplantibacillus plantarum 84-3 (Lp84-3), isolated from dairy samples, can promote resistant starch (RS) degradation, were analyzed. Lactobacillus, Streptococcus, and Lactococcus were the predominant genera in dairy products, whereas the major genera in vegetables were Lactobacillus, Weissella, and Carnimonas. Phages from Siphoviridae, Myoviridae, and Herelleviridae were also present in dairy products. Additionally, the glycosyl hydrolase (GHs) family members GH1 and GH13 and the glycosyltransferase (GTs) family members GT2 and GT4 were abundant in Lp84-3. Moreover, Lp84-3 was enriched in butanoate metabolism enzymes and butanoate metabolite compounds. Therefore, fermented food microbes, especially Lp84-3, have an abundant repertoire of enzymes that promote flavor production, as starter improving the flavor of fermented dairy and vegetable products.

16.
Transl Neurodegener ; 12(1): 58, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093327

RESUMEN

BACKGROUND: The γ-aminobutyric acid (GABA) hypothesis posits a role of GABA deficiency in the central nervous system in the pathogenesis and progression of essential tremor (ET). However, the specific causative factor for GABA deficiency is not clear. The gut microbiota in mammals has recently been considered as a significant source of GABA. Furthermore, the GABA-based signals originating from the intestine can be transmitted to the brain through the "enteric nervous system-vagus nerve-brain" axis. However, the plausible contribution of gut microbiota to ET seems inspiring but remains obscure. METHODS: Fecal samples from patients with ET and healthy controls were examined by metagenomic sequencing to compare the composition of gut microbiota and the expression of genes involved in GABA biosynthesis. The impact of gut microbiota on ET was explored through transplantation of fecal microbiota from patients with ET into the murine ET model. Lactic acid bacteria producing high amounts of GABA were identified through whole-genome sequencing and ultra-performance liquid chromatography-tandem mass spectrometry. Subsequently, mice were treated with the high-GABA-producing strain Lactobacillus plantarum L5. Tremor severity, behavioral tests, pro-inflammatory cytokines, GABA concentration, and gut microbiota composition were examined in these mice. RESULTS: The gut microbiota of patients with ET demonstrated an impaired GABA-producing capacity and a reduced fecal GABA concentration. Transplantation of the gut microbiota from patients with ET induced an extension of tremor duration and impaired mobility in the murine model of ET. L5 exhibited an augmented GABA-producing capacity, with the De Man-Rogosa-Sharpe culture broth containing 262 mg/l of GABA. In addition, administration of L5 significantly decreased the tremor severity and enhanced the movement capability and grasping ability of ET mice. In vivo mechanistic experiments indicated that L5 reshaped the gut microbial composition, supplemented the mucosa-associated microbiota with GABA-producing capacity, increased the GABA concentrations in the cerebellum, and diminished inflammation in the central nervous system. CONCLUSIONS: These findings highlight that deficiency of GABA-producing gut microbes plays an essential role in the pathogenesis of ET and that L5 is a promising candidate for treating ET.


Asunto(s)
Temblor Esencial , Lactobacillus plantarum , Humanos , Ratones , Animales , Lactobacillus plantarum/genética , Temblor , Bacterias , Ácido gamma-Aminobutírico , Suplementos Dietéticos , Mamíferos
17.
Food Res Int ; 174(Pt 1): 113642, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986541

RESUMEN

Low-moisture foods (LMF) have arisen an increasing concern as vehicles of foodborne pathogens. Cronobacter genus, a class A pathogen in powdered infant formula (PIF), is crucial to the safety of LMF. Researchers have concentrated more on the bacterial survival caused by key hazardous factors, yet they often ignore the alteration of virulence properties in the surviving strains following rehydration of LMF mediated by the key factors. Our previous transcriptional profiling showed that luxS might participate in desiccation response. Herein, we further investigated the role of Cronobacter LuxS under desiccation stress by combining with the phenotypic and gene analysis between the Cronobacter parent and luxS mutant strains. Desiccation stress destructing assays confirmed that luxS can significantly enhance the resistance of Cronobacter towards desiccation. Our results also showed that cell hydrophobicity, aggregation, motility, the content of polysaccharide, and AI-2 synthesis pathway involved in luxS-mediated desiccation response. The luxS mutant strain exhibited higher swimming and swarming motility, more content of capsular polysaccharide, and more rapid of aggregation, but lower hydrophobicity than that of the wild-type strain, whereas desiccation stress would result in a opposite effect on these cell surface properties in ΔluxS during rehydration. Additionally, the comparation of gene expression profiles indicated that low moisture would trigger Cronobacter luxS to promote transport osmoprotectants by regulating the expression of proX, proW, and treC, and suppress the expression of cpsG associated with polysaccharide colanic acid. Notably, this study also discovered for the first time that the luxS-deficiency dramatically attenuated adhesion and invasion to intestinal and brain cells, but ΔluxS subjected to desiccation could aggravate the cell virulence instead. Therefore, thinking the alteration of toxicity caused by low-moisture, approach based on blocking the expression of the luxS gene to prevent Cronobacter in LMF needs to be adopted with caution.


Asunto(s)
Cronobacter , Lactante , Humanos , Cronobacter/metabolismo , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fluidoterapia , Polisacáridos
18.
Anal Chim Acta ; 1283: 341940, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977776

RESUMEN

Controlling the concentration of copper(II) in aquatic systems is of importance for human health. Numerous traditional technologies to detect Cu2+ may encounter with limitations, such as high signal background and complicated operation. Herein, a highly selective photoelectrochemical (PEC) sensor is proposed for the "signal-on" detection of Cu2+ employing g-C3N4 nanosheets with MoS2 and Pd quantum dots deposited (Pd/MoS2@g-C3N4). Pd/MoS2@g-C3N4 could present the enhanced photocurrents of specific responses to Cu2+ under light irradiation. MoS2 quantum dots on the sensor are agglomerated into MoS2 bulk during sensing Cu2+, forming an efficient Z-scheme heterojunction. The heterojunction transition induced photoelectrons transferring from the bulk MoS2 to g-C3N4, resulting in "signal-on" PEC responses. Such Z-scheme heterojunction has conquered the traditional heterojunction towards "signal-on" mechanism, that was further verified by band structure measurements and DMPO spin trapping ESR analysis. Photocurrent intensities increased gradually with the addition of incremental Cu2+ concentrations, achieving a detection limit of 0.21 µM and a broad linear interval range from 1 µM to 1 mM with high selectivity and stability. This work may open a new door towards the in situ construction of g-C3N4-based Z-scheme heterojunctions for the signal-on PEC sensing platform, providing wide applications in environmental monitoring and food safety.

19.
J Transl Med ; 21(1): 740, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858192

RESUMEN

BACKGROUND: Changes in the gut microbiota composition is a hallmark of chronic kidney disease (CKD), and interventions targeting the gut microbiota present a potent approach for CKD treatment. This study aimed to evaluate the efficacy and safety of washed microbiota transplantation (WMT), a modified faecal microbiota transplantation method, on the renal activity of patients with renal dysfunction. METHODS: A comparative analysis of gut microbiota profiles was conducted in patients with renal dysfunction and healthy controls. Furthermore, the efficacy of WMT on renal parameters in patients with renal dysfunction was evaluated, and the changes in gut microbiota and urinary metabolites after WMT treatment were analysed. RESULTS: Principal coordinate analysis revealed a significant difference in microbial community structure between patients with renal dysfunction and healthy controls (P = 0.01). Patients with renal dysfunction who underwent WMT exhibited significant improvement in serum creatinine, estimated glomerular filtration rate, and blood urea nitrogen (all P < 0.05) compared with those who did not undergo WMT. The incidence of adverse events associated with WMT treatment was low (2.91%). After WMT, the Shannon index of gut microbiota and the abundance of several probiotic bacteria significantly increased in patients with renal dysfunction, aligning their gut microbiome profiles more closely with those of healthy donors (all P < 0.05). Additionally, the urine of patients after WMT demonstrated relatively higher levels of three toxic metabolites, namely hippuric acid, cinnamoylglycine, and indole (all P < 0.05). CONCLUSIONS: WMT is a safe and effective method for improving renal function in patients with renal dysfunction by modulating the gut microbiota and promoting toxic metabolite excretion.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Insuficiencia Renal Crónica , Humanos , Estudios Retrospectivos , Riñón/metabolismo , Insuficiencia Renal Crónica/terapia
20.
Food Chem X ; 19: 100788, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780281

RESUMEN

This study aimed to compare the nutritive value and obesity prevention of ordinary Cordyceps militaris (CM) and selenium-enriched CM (SeCM). The results indicated that Se enrichment significantly increased the total carbohydrate and soluble dietary fiber content, while the protein and insoluble dietary fiber content decreased. Although the fat content was not affected, the medium and long-chain fatty acids content significantly changed. Moreover, Se enrichment significantly elevated the secondary metabolites belonging to terpenoids and alkaloids, which are linked with the enhanced biosynthesis of secondary metabolites. Both CM and SeCM reduced body weight, adipose accumulation, impaired glucose tolerance, and lipid levels in high-fat diet (HFD)-fed mice, and there was no significant difference between them. Network pharmacological analysis revealed that dietary CM and SeCM prevented HFD-induced obesity and associated metabolic diseases with multi-ingredients acting on multi-targets. Overall, Se enrichment improved the nutritive value of CM without altering its role in preventing obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...